The minimal preprocessing pipelines for the Human Connectome Project

نویسندگان

  • Matthew F. Glasser
  • Stamatios N. Sotiropoulos
  • J. Anthony Wilson
  • Timothy S. Coalson
  • Bruce Fischl
  • Jesper L. R. Andersson
  • Junqian Xu
  • Saâd Jbabdi
  • Matthew A. Webster
  • Jonathan R. Polimeni
  • David C. Van Essen
  • Mark Jenkinson
چکیده

The Human Connectome Project (HCP) faces the challenging task of bringing multiple magnetic resonance imaging (MRI) modalities together in a common automated preprocessing framework across a large cohort of subjects. The MRI data acquired by the HCP differ in many ways from data acquired on conventional 3 Tesla scanners and often require newly developed preprocessing methods. We describe the minimal preprocessing pipelines for structural, functional, and diffusion MRI that were developed by the HCP to accomplish many low level tasks, including spatial artifact/distortion removal, surface generation, cross-modal registration, and alignment to standard space. These pipelines are specially designed to capitalize on the high quality data offered by the HCP. The final standard space makes use of a recently introduced CIFTI file format and the associated grayordinate spatial coordinate system. This allows for combined cortical surface and subcortical volume analyses while reducing the storage and processing requirements for high spatial and temporal resolution data. Here, we provide the minimum image acquisition requirements for the HCP minimal preprocessing pipelines and additional advice for investigators interested in replicating the HCP's acquisition protocols or using these pipelines. Finally, we discuss some potential future improvements to the pipelines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adding dynamics to the Human Connectome Project with MEG

The Human Connectome Project (HCP) seeks to map the structural and functional connections between network elements in the human brain. Magnetoencephalography (MEG) provides a temporally rich source of information on brain network dynamics and represents one source of functional connectivity data to be provided by the HCP. High quality MEG data will be collected from 50 twin pairs both in the re...

متن کامل

Informatics and Data Mining Tools and Strategies for the Human Connectome Project

The Human Connectome Project (HCP) is a major endeavor that will acquire and analyze connectivity data plus other neuroimaging, behavioral, and genetic data from 1,200 healthy adults. It will serve as a key resource for the neuroscience research community, enabling discoveries of how the brain is wired and how it functions in different individuals. To fulfill its potential, the HCP consortium i...

متن کامل

The WU-Minn Human Connectome Project: An overview

The Human Connectome Project consortium led by Washington University, University of Minnesota, and Oxford University is undertaking a systematic effort to map macroscopic human brain circuits and their relationship to behavior in a large population of healthy adults. This overview article focuses on progress made during the first half of the 5-year project in refining the methods for data acqui...

متن کامل

The Human Connectome Project: Advances in Diffusion Mri Acquisition and Preprocessing

Stamatios N Sotiropoulos, Saad Jbabdi, Junqian Xu, Jesper L Andersson, Steen Moeller, Edward J Auerbach, Matthew F Glasser, David Feinberg, Christophe Lenglet, David C Van Essen, Kamil Ugurbil, Timothy EJ Behrens, and Essa Yacoub FMRIB Centre, University of Oxford, Oxford, United Kingdom, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States, Department...

متن کامل

Resting-state fMRI in the Human Connectome Project

Resting-state functional magnetic resonance imaging (rfMRI) allows one to study functional connectivity in the brain by acquiring fMRI data while subjects lie inactive in the MRI scanner, and taking advantage of the fact that functionally related brain regions spontaneously co-activate. rfMRI is one of the two primary data modalities being acquired for the Human Connectome Project (the other be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2013